
Refinement Operators to Facilitate the Reuse
of Interaction Laws in Open Multi-Agent Systems

Gustavo Carvalho, Carlos Lucena, Rodrigo Paes
PUC-Rio

Marquês de São Vicente 225
4º Andar RDC – Rio de Janeiro Brasil

+55-21-25406915 – 137

{guga,lucena,rbp}@inf.puc-rio.br

Jean-Pierre Briot
LIP6

Univ. Paris 6 - CNRS
 8 rue du Capitaine Scott

75015 PARIS , France

Jean-Pierre.Briot@lip6.fr

ABSTRACT
As new software demands and requirements appear, the system
and its interaction laws must evolve to support those changes.
Languages and models should provide the tools for dealing with
this evolution. Poor support on evolution has a negative impact on
system maintainability. In this paper, we propose some refinement
operators to extend the interaction laws in open multi-agent
systems. As an example of this idea, we implemented a
customizable application in the supply chain management domain
as an open system environment

Categories and Subject Descriptors
F.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems—Multiagent Organizations; F.2.11 [Distributed
Artificial Intelligence]: Coherence and Coordination

Keywords
Reuse, law-enforcement, software agents, interaction protocol.

1. INTRODUCTION
Nowadays, one characteristic that is crucial for software in many
situations is openness. Open systems are composed of
autonomous distributed components that may enter and leave the
environment at their will, and they may even have conflicting
interests [8] because open software systems have no centralized
control over the development of its parts [1]. Multi-agent auction
systems and virtual enterprises are examples of such open and
distributed applications [21].

Since open system components are often autonomous, sometimes
they behave unpredictably and unforeseen situations arise. We
believe that the specification of open multi-agent systems (open
MAS) should include laws that define what and when something
can happen in an open system. Laws are restrictions imposed by
the environment to tame uncertainty and to promote open system
dependability [14][15]. A governance mechanism is the mediator
that enforces the law specification. Examples of governance
mechanisms are LGI[14], Islander[7] and XMLaw[16]. In this
paper, we will use the XMLaw description language [15] to map
customizable specification of interaction rules into a governance
mechanism.

The greater the dependence of our society on open distributed
applications, the greater will be the demand for dependable
applications and also for new solutions that are variations of
previously existing ones. One of the challenges of software

development is to produce software that is designed to evolve, and
so be extended, therefore reducing the maintenance efforts.

Nowadays, we do not have much support on the reuse of law
specifications. We will give a simple example that specifies the
interaction laws between two communities. In order to specify this
example, two group of laws elements are available, one for each
community. The laws show how the communication between two
communities is disabled unless the exchanges of specific
messages is allowed. We borrowed this example from LGI
homepage [13]. We can specify it in XMLaw (Figure 1) without
considering any support to extend or configure a basic definition
that can be reused for both communities.

In this case, we can observe that copying / modifying / pasting the
law specification will derive a semi-identical specification with
few peculiarities. If we observe the first example, the code is
practically the same between the two definitions (Figure
1Erreur ! Source du renvoi introuvable.); the only difference is
the id and the name of the organization and scene and also the
constraint that is used twice in each scene. With a simple
refinement, we could have a basic description of this law and with
little customization effort both specifications could be proposed.

As the first example shown, open MAS should be specified and
developed to facilitate extensions and law-governed approaches
should also present a solution to this concern. As open MAS need
to be customized according to different purposes and peculiarities,
it is possible to express extensions over interactions of software
agents. In this paper, we will address the problem of how to
prepare a law for extensions and how to refine law specifications.
For this purpose, we enhanced the XMLaw description language
[15] with some refinement operators to support those
requirements and to realize a mapping of a customizable
specification to the monitoring of interaction rules of governance
mechanisms.

The main contribution of this proposal is to provide extensibility
support within the interaction specification and compliance
verification in open systems applications. For example, the
operators allow the extension of the interaction laws including
new services to run during the interaction monitoring and with
filters to validate or not a message or norm. Finally, the
improvements on XMLaw were mapped to a law-governed
mechanism that interprets those descriptions, plus its
specializations, and analyzes the compliance of software agents
that inhabit open software systems.

<Organization id="exim1" name="Example Org 1">
<Scene id="ExchangeInfo" time-to-live="infinity">

<Creators>...</Creators>
<Entrance>... </Entrance>
<Messages>... </Messages>
<Protocol>

<States>... </States>
<Transitions>

<Transition id="normalCom" …/>
<Transition id="AnotherCom" …/>
<Transition id="externalCom" …>

<Constraints>
<Constraint id="checkForeigner“

class="checkForeigner1"/>
</Constraints>

</Transition>
<Transition id="AnotherExternalCom" …>

<Constraints>
<Constraint id="checkForeigner“

class="checkForeigner1"/>
</Constraints>

</Transition>
<Transition id="quitting" .../>

</Transitions>
</Protocol>

</Scene>
<Role id="agent"/>
<Role id="foreignAgent"/>

</Organization>

<Organization id="exim2" name="Example Org 2">
<Scene id="ExchangeInfo2" time-to-live="infinity">

<Creators>...</Creators>
<Entrance>... </Entrance>
<Messages>... </Messages>
<Protocol>

<States>... </States>
<Transitions>

<Transition id="normalCom" …/>
<Transition id="AnotherCom" …/>
<Transition id="externalCom" …>

<Constraints>
<Constraint id="checkForeigner“

class="checkForeigner2"/>
</Constraints>

</Transition>
<Transition id="AnotherExternalCom" …>

<Constraints>
<Constraint id="checkForeigner“

class="checkForeigner2"/>
</Constraints>

</Transition>
<Transition id="quitting" …/>

</Transitions>
</Protocol>

</Scene>
<Role id="agent"/>
<Role id="foreignAgent"/>

</Organization>

Figure 1 Copy and Paste problem in XMLaw

The organization of this paper is as follows. Section 2 describes
an example of an evolvable open MAS that is used to describe our
proposal. Section 3 details the law-governed approach, its
architecture and some elements of the XMLaw description
language [15]. In, Section 4, we discuss variations in open MAS
interactions and we describe how we included refinement
operators in XMLaw. Section 4 also explains some examples of
extension points identified in TAC-SCM’s editions and we show
how XMLaw can be used to support extensibility in a compliance
mechanism. Related work is described in Section 5. Finally, we
evaluate this approach and describe some future work and our
conclusions in Section 6.

2. An Example of Evolvable Open MAS
A proof of concept prototype has been developed based on the
specification of the Trading Agent Competition - Supply Chain
Management (TAC SCM). TAC SCM [3][6][17] editions provide
some evidences that the interaction specification evolves over
time and so an extension support can reduce maintenance efforts.

The TAC SCM [3] has been designed with a simple set of rules to
capture the complexity of a dynamic supply chain. SCM
applications are extremely dynamic and involve an important
number of products, information and resources among their
different stages. In our case study, we mapped the requirements of
TAC SCM into interaction laws and agents are implemented with
JADE [4].

Figure 2 - Roles, relationships and cardinalities of TAC SCM
In TAC SCM, we chose the scenario of negotiation between the
suppliers and assemblers to explain how extensions on interaction
laws are used (Figure 2). According to [6], the negotiation process
involves an assembler agent that buys components from suppliers.
A bank agent also participates in this negotiation because an
assembler must pay the components for the supplier. In this
scenario, an assembler may send RFQs to each supplier everyday

to order components offered by the supplier. Each RFQ represents
a request for a specified quantity of a particular component type to
be delivered on a specific date in the future. The supplier collects
all RFQs received during the “day” and processes them. On the
following “day”, the supplier sends back to each agent an offer for
each RFQ, containing the price, adjusted quantity, and due date. If
the agent wishes to accept an offer, it must confirm it by issuing
an order to the supplier.

3. Governing Interactions in Open Systems
with XMLaw
Law governed architectures can be designed to guarantee that the
specifications of open systems will be obeyed. We developed an
infrastructure which includes a communication component that is
provided to agent developers [16]. This architecture is based on a
pool of mediators that intercept messages and interpret the laws
previously described. As more clients are added to the system,
additional mediators’ instances can be added to improve
throughput.

The core of a law governed approach is the mechanism used by
the mediators to monitor the conversations between components.
We have developed a software support [16] that permits whenever
necessary to extend this basic infrastructure to fulfill open system
requirements or interoperability concerns. Distributed software
agents are independently implemented, i.e., the development is
done without a centralized control. We assume that every agent
developer may have a priori access to the open system
specification, including the protocol descriptions and the
interaction laws.
In this section, we explain the XMLaw description language [15].
Here, XMLaw is used to represent the interaction rules of an open
system specification. Those rules are interpreted by a mechanism
that at runtime analyzes the compliance of software agents to
interaction laws [16].

XMLaw represents the structure and the relationships of important
law elements (Figure 3). A law specification is a description of
law elements. Law elements are interrelated in a way that it is
possible to specify interaction protocols using time restrictions,
norms, or even time sensitive norms.

Figure 3 Conceptual Model

In this section, we describe how norms are used to enhance scene
and transition definitions; how constraints in norms and
transitions act as filters of events; and how actions are used as an
adaptation mechanism to support an active behavior of the
environment in an open system. For further details on each of the
concept appearing in the conceptual model please refer to [15].
Below, we will discuss XMLaw structure using the specification
of laws for TAC SCM example to facilitate its understanding.
Statically, an interaction protocol defines the set of states and
transitions (activated by messages or any other kind of event)
allowed for agents in an open system. Norms are jointly used with
the protocol specification, constraints, actions and also temporal
elements, to provide a dynamical configuration for the allowed
behavior of components in an open system. Norms prescribe how
the active distributed software components ought to behave, and
specify how they are permitted to behave and what their rights
are. To verify the compliance of software agents, the mediator
keeps information about the set of activated norms, the set of
deactivated norms, and any other data regarding the system
execution.

There are three types of norms in XMLaw: obligations,
permissions and prohibitions. The obligation norm defines a
commitment that software agents acquire while interacting with
other entities. For instance, the winner of an auction is obligated
to pay the committed value and this commitment might have some
consequences to avoid breaking this rule. The permission norm
defines the rights of a software agent in a given moment, e.g. the
winner of an auction has permission to interact with a bank
provider through a payment protocol. Finally, the prohibition
norm defines forbidden actions of a software agent in a given
moment, for instance, if an agent does not pay its debts, it will not
be allowed of future participations in a scene.

In TAC SCM, one permission norm about the maximum number
of requests for quotation that an assembler can submit to a
supplier was created. According to TAC SCM specification [6],
each day, each agent may send up to a maximum number of
RFQs. Besides this permission, the constraint over the acceptable
due date of a RFQ regulates the same interaction, the request for
quote message.

The structure of the Permission (Listing 1), Obligation and
Prohibition elements are equal. Each type of norm contains
activation and deactivation conditions. In that example, an
assembler will receive the permission when it logged in the scene
(scene activation event) and will lose the permission after emitting
an order (event orderTransition). Besides, norms define the agent
role that owns it through the attribute Owner. In that case, the

assembler agent will receive the permissions. Norms have also
constraints and actions associated with it, but those elements will
be explained later. Norms also generate activation and
deactivation events. For instance, as a consequence of the
relationship between norms and transitions, it is possible to
specify which norms must be made active or deactivated for firing
a transition. In this sense, a transition could only fire if the sender
agent has a specific norm.

<Norms>
 <Permission id="AssemblerPermissionRFQ">
 <Owner>Assembler</Owner>
 <Activations>
 <Element ref="negotiation"
 event-type="scene_creation"/>
 </Activations>
 <Deactivations>
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Deactivations>
 <Constraints>
 <Constraint id="checkCounter"
 class="CounterLimit"/>
 </Constraints>
 <Actions>
 <Action id="permissionRenew"
 class="ZeroCounter">
 <Element ref="nextDay"
 event-type="clock_tick"/>
 </Action>
 <Action id="orderID"
 class="RFQCounter"/>
 <Element ref="rfqTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>
 </Permission>
</Norms>

Listing 1: Permission Structure
Constraints are restrictions over norms or transitions and generally
specify filters for events, constraining the allowed values for a
specific attribute of an event. For instance, messages carry
information that is enforced in various ways. A message pattern
enforces the message structure fields [15]. However, message
pattern does not describe what the allowed values for specific
attributes are, but constraints can be used for this purpose.
Constraints are expressed using Java code. In this way, developers
are free to build as complex constraints as needed for their
applications.

<Transition id="rfqTransition" from="as1" to="as2"
 message-ref="rfq>
 <Constraints>
 <Constraint id="checkDueDate"
 class="ValidDate"/>
 </Constraints>
 ...
</Transition>

Listing 2: Constraint in Transition Tags
Constraints are defined inside the Transition (Listing 2Erreur !
Source du renvoi introuvable.) or Norm (Listing 1) elements
The Constraint element defines the class attribute that indicates
the java class that implements the filter. This class is called when
a transition or a norm is supposed to fire, and basically the
constraint analyzes if the message values or any other events’
attributes are valid. In Erreur ! Source du renvoi introuvable., a

constraint will verify if the date expressed in the message is valid
according to TAC rules; if it is not, the message will be blocked.
In Listing 1, a constraint is used the verify the number of
messages that the agent has sent until now, if it has been exceeded
the permission is not valid anymore..

Environment actions, or just actions, are domain-specific Java
code that runs integrated with XMLaw specifications. Actions can
be used to plug services in an environment. For instance, an
environment can call a debit service from a bank agent to
automatically charge the purchase of a good in a negotiation.

Since actions are also an XMLaw element, they can be activated
by any event such as transition activation, norm activation, and
even action activation. An action can be activated by as many
events as we wish. The action structure is showed in the example
of Listing 1. The class attribute of an Action specifies the java
class in charge of the functionality implementation. The Element
tag references the events that activate this action, and as many
Element tags as needed can be defined to trigger an action. In this
example, the action is used to update the context of the norm,
counting the number of submitted messages.
An action can be defined in three different scopes: Organization,
Scene and Norms. An action defined in a Norm is only visible at
this level, this means that any element in this scope can reference
events issued by this action and that this action can get and update
information at this level and upper levels. Actions defined in the
scene scope can be referenced by any element at this level. And
actions defined in the organization scope are visible by all
elements in this level.

4. Refinement Operators to Specify Laws in
Open Multi-Agent Systems
The definition of how the agents interact is very important to
understand the open MAS behavior. The interaction specification
is used as guidelines to enforce the expected behavior of agents in
open MAS. Sometimes, the interaction laws that enforce the
relationships between agents are not always fully understood early
in the open MAS life cycle. Still, many more interaction laws are
not applied, because of a lack of systems support for changing
interaction laws (i.e. extensibility) or because the interaction laws
are exceptionally complex.

We argue that the interaction laws of open MAS should also be
specified and developed to facilitate extensions to deal with this
challenge. In this sense, it is necessary to have an instrument to
specify which law elements can be customized and so defined as
extension points. The extension points are a means of representing
knowledge about the place where modifications and
enhancements in laws can be made. In our context, it is useful to
permit the inclusion of norms, constraints and actions into a pre-
defined law specification. Even with extension points, the semi-
complete law element specification can be referenced by other
law elements.

XMLaw has two elements that can be easily plugged into the
specification of interaction laws: actions and constraints. Actions
are used to plug services in open systems. Services are domain
specific functionalities in open systems. The first attempt to define
extension points was deferring the definition of the class
implementation [5], in contrast with the action specification
showed in Listing 1Erreur ! Source du renvoi introuvable.. The
same applies to constraints, instead of defining a reference to a
class, we defer it definition (Listing 3).

<Action id="orderID"/>
 <Element ref="rfqTransition"
 event-type="transition_activation"/>
</Action>
 ...
<Constraints>
 <Constraint id="checkDueDate"/>
</Constraints>

Listing 3: Action and Constraint hook
The subsections below explain how the interaction specification
with extension points can be prepared to further refinements.
Before in [5], the extensions were restricted to action and
constraint definitions and it was not clearly defined when an
element was an abstract element. In this sense, we propose three
new operators to facilitate refinements in XMLaw specification:
abstract, completes and extends.

4.1 Identifying Extension Points: abstract
We made some improvements on the attempt [5] towards
extension points. Before, it was not clearly documented which
element could be extended, the designer had to find out where
were the semi-complete specifications by browsing actions and
constraints that did not reference a concrete class implementation.

The abstract attribute defines when a law element is not
completely implemented; it is useful to indicate in XMLaw code
when we have “hooks” or even when the existing laws must be
better defined to be used. If no value is determined, the element is
a concrete one (default abstract=”false”) or the designer can
optionally specify that abstract=”false”. If he wants to specify that
a law element needs some refinements to be used he has to
explicitly specify the attribute abstract with the value true
(abstract=”true”). If a law is defined as concrete, it can not leave
any element to be further refined, all elements must be fully
implemented, otherwise, the interpreter will indicate an error.

An abstract operator can define law elements with some gaps to
be filled further. It is also a means to achieve extension point idea,
defining clearly the context where the extensions are expected.
We still can defer the definition of the implementation of actions
and constraints classes, as well as, we can define other law
elements as abstract, and as we will see we can also extend their
definition by including new or superposing elements.

In TAC SCM, the constraint checkDueDate (Listing 4Erreur !
Source du renvoi introuvable.Erreur ! Source du renvoi
introuvable.) is associated with the transition rfqTransition. It
means that if the verification is not true the transition will not be
fired. The decision regarding the implementation of the
checkDueDate constraint is deferred and so no class is specified in
Listing 4Erreur ! Source du renvoi introuvable..

<Transition id="rfqTransition" from="as1" to="as2"
 message-ref="rfq" abstract=”true”>
 <Constraints>
 <Constraint id="checkDueDate"/>
 </Constraints>
 <ActiveNorms>
 <Norm ref="AssemblerPermissionRFQ"/>
 </ActiveNorms>
</Transition>

Listing 4: Permission and Constraint over RFQ message
In Listing 5Erreur ! Source du renvoi introuvable., there are
two extension points: the constraint checkCounter and the action
orderID. To customize this constraint and this action, we need to

plug-in the class implementation. The constraint checkCounter is
an extension point that is associated with the permission
AssemblerPermissionRFQ. It means that if the verification is not
true, the norm will not be valid, even if it is activated. The action
ZeroCounter Erreur ! Source du renvoi introuvable.is defined
under the permission AssemblerPermissionRFQ and it is triggered
by a clock-tick everyday, turning to zero the value of the counter
of the number of requests issued by the assembler in this day. We
do not give further details regarding the clock definition. The
other action orderID Erreur ! Source du renvoi introuvable.is
also an extension point and it is activated by every transition
transitionRFQ. It is used to count the number of RFQs issued by
the assembler, updating a local variable.

 <Permission id="AssemblerPermissionRFQ"
 type=“abstract”>
 <Owner>Assembler</Owner>
 <Activations>
 <Element ref="negotiation"
 event-type="scene_creation"/>
 </Activations>
 <Deactivations>
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Deactivations>
 <Constraints>
 <Constraint id="checkCounter"/>
 </Constraints>
 <Actions>
 <Action id="permissionRenew"
 class="tacscm.norm.actions.ZeroCounter">
 <Element ref="nextDay"
 event-type="clock_tick"/>
 </Action>
 <Action id="orderID">
 <Element ref="rfqTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>
 </Permission>

Listing 5: AssemblerPermissionRFQ Norm description
Another example of extension is given in the specification of the
relationship between orders and offers of the negotiation protocol.
According to Collins et al. [6], agents confirm supplier offers by
issuing orders. After that, an assembler gains a commitment with
a supplier, and this commitment is expressed as an obligation. It is
expected that suppliers receive a payment for its components. This
requirement specifies the structure of the ObligationToPay
obligation (Listing 6), defining that it will be activated by an order
message and that it will be deactivated with the delivery of the
components and also with the payment. A supplier will only
deliver the product if the assembler has the obligation to pay for
them (Listing 7Erreur ! Source du renvoi introuvable.).

 <Obligation id="ObligationToPay"
 abstract=”true”>
 <Owner>Assembler</Owner>
 <Activations>
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Activations>
 <Deactivations>
 <Element ref="payingTransition"
 event-type="transition_activation"/>
 </Deactivations>
 </Obligation>

Listing 6: Obligation to pay specification
<Transition id="orderTransition" from="as3"
 to="as4" message-ref="order"/>
<Transition id="deliveryTransition" from="as4"
 to="as5" message-ref="delivery">
 <ActiveNorms>
 <Norm ref="ObligationToPay"/>
 </ActiveNorms>
</Transition>

Listing 7: ObligationToPay usage

4.2 Filling the gaps: completes
As laws can be defined as abstract, with some elements to be
further detailed, we still need instruments to describe at
implementation time the modifications to turn laws concrete.

The completes attribute is an operator that is useful to fill the
elements that were left unspecified when a law element was
defined as abstract. It is a simple operator to realize extensions as
it can just be used to define action and constraints class
implementations. The completes operator turns an abstract
element into a complete one and can not leave any element
unspecified unless it also redefines this element as an abstract one.

The completes operator can not include any new element to the
abstract law, it is limited to the definition of class
implementations.

Below, we present the refinements proposed to the law described
above. In TAC SCM 2005 [6], on each day, each agent may send
up to five RFQs to each supplier for each of the products offered
by that supplier, for a total of ten RFQs per supplier. For this
refinement, another action component named RFQCounter2005 is
plugged-in (Listing 8Erreur ! Source du renvoi introuvable.). It
counts the number of RFQs according to the type of component.
The constraint CounterLimit2005 was also chosen a specific
counter for each type of component that a supplier provides.

<Permission id=“APRFQ2005”
 completes="AssemblerPermissionRFQ">
 <Constraint id="checkCounter"
class="tacscm.norm.constraints.CounterLimit2005"/>
 <Action id="orderID"
class="tacscm.norm.actions.RFQCounter2005">...</Ac
tion>
</Permission>

Listing 8: Permission AssemblerPermissionRFQ extension
An RFQ with DueDate beyond the end of the game will not be
considered by the supplier. RFQs with due dates beyond the end
of the game, or with due dates earlier than 2 days in the future,
will not be considered. This requirement is implemented by the
constraint ValidDate2005 (Listing 9Erreur ! Source du renvoi
introuvable.). Notice that if we want to extend this law to other
editions of TAC SCM, we just need to define and associate new
implementations of these actions and constraints.

<Transition id=“rfq2005”
 completes="rfqTransition">
 <Constraint id="checkDueDate"
 class="tacscm.constraints.ValidDate2005"/>
</Transition>

Listing 9: Constraint checkDueDate extension

4.3 OO specialization: extends
The extends attribute is a more powerful operator and it is similar
to the specialization operation in object-oriented languages (e.g
extends in Java).

Basically, the extends operator reuses the description of law
elements and includes any modifications that are necessary to
customize the law element to users needs, including the
redefinition of law elements. For example, this operator can
include new activation references, new action elements, new norm
elements and can also superpose any element that was previously
specified. Similarly to completes, the extends operator turns an
abstract element into a complete one and can not leave any
element unspecified unless it redefines this element as an abstract
one.
According to [6], suppliers wishing perhaps to protect themselves
from defaults, will bill agents immediately for a portion down of
the cost of each order placed. The remainder of the value of the
order will be billed when the order is shipped. In TAC SCM 2005,
the down payment ratio is 10%. This down payment is
implemented by the action SupplierPayment (Listing 10Erreur !
Source du renvoi introuvable.). Notice that we have added a
definition regarding the existence of an action in the context of the
obligation definition.

<Obligation id="ObligationToPay2005“
 extends="ObligationToPay">
 <Actions>
 <Action id="supplierPayment"
 class="tacscm.norm.actions.SupplierPayment">
 <Element ref="orderTransition"
 event-type="transition_activation"/>
 </Action>
 </Actions>
</Obligation>

Listing 10: ObligationToPay extension for TAC SCM 2005

4.4 Execution order of law elements after
extensions
In XMLaw, the composition and interrelationship among law
elements is done by events. Every law element is related to
events, one law element can generate events to signal something
to other elements (Figure 4). Other elements can sense events for
many purposes, for instance, activating or deactivating
themselves, and so on. In this sense, the order of execution must
be considered and clearly understood even with extensions, i.e, we
need to clearly define the order of elements’ activation in the case
of using the refinement operations.

Element Event Element
generates perceives

Figure 4 - XMLaw Event Model

The event monitoring model is implemented using the observer
pattern [9]. During law interpretation, new elements are attached
to the observer structure. Laws are interpreted at least in two
steps, first the base law is read and then extensions are attached to
the execution model. In this sense, any new element defined after
an extension is associated with the execution model after the basic
elements and then their activation will occur after the activation of
basic elements.

Let us consider the example scenario (Figure 5) where you have
hierarchy of extensions for a payment policy that consider the

client importance for the bank The discount action will calculate
the percentage of discount that a client can have on his payment
(it is possible to accumulate discounts). During system execution,
suppose that the monitoring mechanism receives an event
PAYMENT from a PRIME Client, and then the expected order of
activation of actions will be discount 10%, discount 5% and
finally discount 20%. If the product cost is 100 units, at the end of
this execution it would cost 68, 4 units.

Base law CLIENT has Action (Discount 10%)
activated by event PAYMENT

Extension SPECIAL has Action (Discount 5%)
activated by event PAYMENT

Extension PRIME has Action (Discount 20%)
activated by event PAYMENT

Figure 5 - Example of the execution order of law elements

5. Related Work
In Esteva [7] approach, scenes and protocol elements specify the
interaction protocol using a global view of the interaction.
XMLaw includes the concept of actions, which allows execution
of Java code in response to some interaction situation, and we use
them to implement the extension points.

Minsky [2][14] proposes a coordination and control mechanism
called law governed interaction (LGI). This mechanism is based
in two basic principles: the local nature of the LGI laws and a
decentralization of law enforcement. It provides a language to
specify laws and it is concerned with architectural decisions to
achieve a high degree of robustness. In contrast, our approach
provides an explicit conceptual model and focuses on different
concepts such as Norms and also interaction extensibility support.
Ao and Minksy [2] propose an approach to enhance LGI with the
concept of policy-hierarchy to support that different internal
policies are formulated independently of each other, achieving by
this means a flexibility support. Differently from our approach,
Ao and Minsky consider confidentiality as a requirement for their
solution. The extensions that we have presented until now has the
goal of supporting open system law maintenance, instead of
flexibility for confidentiality purposes. One interesting
characteristic that we would like to bring to XMLaw is the
possibility of defining limits or how extensions can be redefined.

COSY [10] views a protocol as an aggregation of primitive
protocols. Each primitive protocol can be represented by a tree
where each node corresponds to a particular situation and
transitions correspond to possible messages an agent can either
receive or send, i.e., the various interaction alternatives. In
AgenTalk [12], protocols inherit from one another. They are
described as scripts containing the various steps of a possible
sequence of interactions. Beliefs also are embedded into scripts.
Koning and Huget [11] deal with the modeling of interaction
protocols for multi-agent systems, outlining a component-based
approach that improves flexibility, abstraction and protocol reuse.
All of the approaches listed in this paragraph are useful
instruments to promote reuse, they can be seen as instruments for
specifying extendable laws.

Singh [19] proposes a customizable governance service, based on
skeletons. His approach formally introduces traditional scheduling
ideas into an environment of autonomous agents without requiring

unnecessary control over their actions, or detailed knowledge of
their designs. Skeletons are equivalent to state based machines
and we could try to reuse their formal model focusing on the
implementation of extensions. But [19] has few implementation
details and examples which could allow us to understand how his
proposal was implemented.

6. Conclusions and Future Work
We are addressing the problem of constructing governance
mechanisms that ensure that agents will conform to a well defined
customizable specification. Our main goal is to contribute on the
engineering on how we can productively define and reuse laws.
We are also contributing with the study on how to engineer
governance mechanisms development. With the refinement
operators, we support the design of law elements for extension.

While analyzing the open software system domain, it is possible
to distinguish two groups of specifications concerning agent’s
interactions: fixed (stable) and flexible (extensible). By this
analysis, it is possible to design part of the open system evolution
in the solution. If a desired characteristic of a system is long-term
stability, then the challenge to developers is to deliver a product
that identifies the aspects of the open MAS that will not change
and cater the software to those areas. Besides some basic services,
in open systems, system stability is characterized by the
interaction protocol and some general rules that are common to all
open MAS instances. Extensions on interaction rules will impact
the open MAS and the agents and extensions are specified. It is
our interest to continue to research these topics, so we will
continue to enhance XMLaw to support interaction extensibility
specification.

We are aware of possible problems about consistency when
redefining or extending laws. We are dealing with this problem
through the definition of a formal framework that enables us to
check possible inconsistencies. However, a deeper discussion is
out of scope of this paper.

7. Acknowledgments
We gratefully acknowledge the financial support provided by the
CNPq as part of individual grants and of the ESSMA project
(552068/2002-0) and by CAPES as part of the EMACA Project
(CAPES/COFECUB 482/05 PP 016/04).

8. References
[1] Agha, G. A. (1997) Abstracting Interaction Patterns: A

Programming Paradigm for Open Distributed Systems, In
(Eds) E. Najm and J.-B. Stefani, Formal Methods for Open
Object-based Distributed Systems IFIP Transactions,
Chapman & Hall.

[2] Ao, X. and Minsky, N. (2003). Flexible Regulation of
Distributed Coalitions. In Proc. of the 8th European
Symposium on Research in Computer Security (ESORICS).
Gjøvik Norway, October.

[3] Arunachalam, R; Sadeh, N; Eriksson, J; Finne, N; Janson, S.
The Supply Chain Management Game for the Trading Agent
Competition 2004. CMU-CS-04-107, July 2004

[4] Bellifemine, F; Poggi, A; Rimassa, G. (2001) Jade: a
fipa2000 compliant agent development environment, in:
Proceedings of the fifth international conference on
Autonomous agents, ACM Press, 2001, pp. 216–217

[5] CARVALHO, Gustavo; PAES, Rodrigo; LUCENA, Carlos;
Extensions on Interaction Laws in Open Multi-Agent
Systems. First Workshop on Software Engineering for Agent

Oriented Systems, Brazilian Symposium on Software
Engineering (SBES2005). Uberlândia, Brazil, 2005.

[6] Collins, J; Arunachala,R; Sadeh,N; Eriksson,J; Finne,N;
Janson,S. (2005) The Supply Chain Management Game for
the 2005 Trading Agent Competition. CMU-ISRI-04-139.
http://www.sics.se/tac/tac05scmspec_v157.pdf

[7] Esteva, M. (2003) Electronic institutions: from specification
to development, Ph.D. thesis, Institut d’Investigació en
Intelligència Artificial, Catalonia - Spain.

[8] Fredriksson M. et al. (2003) First international workshop on
theory and practice of open computational systems. In
Proceedings of twelfth international workshop on Enabling
technologies: Infrastructure for collaborative enterprises
(WETICE), Workshop on Theory and practice of open
computational systems (TAPOCS), pp. 355 - 358, IEEE
Press.

[9] Erich Gamma, Ralph Johnson, Richard Helm, John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

[10] Haddadi, A. Communication and Cooperation in Agent
Systems: A Pragmatic Theory, volume 1056 of Lecture
Notes in Computer Science. Springer Verlag, 1996.

[11] Koning, J.L. and Huget, M.P. A component-based approach
for modeling interaction protocols. In H. Kangassalo and E.
Kawaguchi, editors, 10th European-Japanese Conference on
Information Modelling and Knowledge Bases, Frontiers in
Artificial Intelligence and Applications.IOS Press, 2000

[12] Kuwabara, K; Ishida, T; and Osato, N. AgenTalk:
Coordination protocol description for multiagent systems. In
First International Conference on MultiAgent Systems
(ICMAS-95), San Francisco, June 1995. AAAI Press. Poster.

[13] LGI homepage. http://www.moses.rutgers.edu/ . Visited in
12/01/2005.

[14] Minsky, N. H.; and Ungureanu V. (2000) Law-governed
interaction: a coordination and control mechanism for
heterogeneous distributed systems, ACMTrans. Softw. Eng.
Methodol. 9 (3) 273–305.

[15] Paes, R. B.; Carvalho G. R.; Lucena, C.J.P.; Alencar, P. S.
C.; Almeida H.O.; Silva, V. T (2005a). Specifying Laws in
Open Multi-Agent Systems. In: Agents, Norms and
Institutions for Regulated Multi-agent Systems (ANIREM),
AAMAS2005.

[16] Paes, R.B; Lucena, C.J.P; Alencar, P.S.C. (2005b). A
Mechanism for Governing Agent Interaction in Open Multi-
Agent Systems. http://www.les.inf.puc-
rio.br/governance/pubs.html

[17] Pree,W.Essential Framework Design Patterns.Object
Magazine 1997

[18] Sadeh, N; Arunachalam, R; Eriksson, J; Finne, N; Janson, S.
(2003) TAC-03: a supply-chain trading competition, AI Mag.
24 (1) 92–94.

[19] Singh, M. P., "A Customizable Coordination Service for
Autonomous Agents," Intelligent Agents IV: Agent Theories,
Architectures, and Languages, Munindar P. Singh et al. ed.,
Springer, Berlin, 1998, pp. 93-106.

[20] Wooldridge, M; Weiss, G; Ciancarini, P. (Eds.) (2002)
Agent-Oriented Software Engineering II, Second
International Workshop, AOSE 2001, Montreal, Canada,
May 29, 2001, Revised Papers and Invited Contributions,
Vol. 2222 of Lecture Notes in Computer Science, Springer.

[21] Zambonelli, F, Jennings, N; Wooldridge, M. (2003)
Developing multiagent systems: The gaia methodology,
ACM Trans. Softw. Eng. Methodol. 12 (3) 317–370.

